Variation in biofilm formation among symbiotic and free-living strains of Vibrio fischeri.

نویسندگان

  • Alba Chavez-Dozal
  • Michele K Nishiguchi
چکیده

Persistence and survival under various environmental stresses has been attributed to the capacity of most bacteria to form biofilms. In aquatic environments, the symbiotic bacterium Vibrio fischeri survives variable abiotic conditions during its free-living stage that dictates its ability to colonize the squid host. In the present study, the influence of different abiotic factors such as salt concentration, temperature, static/dynamic conditions, and carbon source availability were tested to determine whether biofilm formation occurred in 26 symbiotic and free-living V. fischeri strains. Statistical analysis indicate that most strains examined were strong biofilm producers under salinity concentrations that ranged between 1-5%, mesophilic temperatures (25-30 °C) and static conditions. Moreover, free-living strains are generally better biofilm formers than the symbiotically competent ones. Geographical location (strain origin) also correlated with biofilm formation. These findings provide evidence that abiotic growth conditions are important for determining whether mutualistic V. fischeri have the capacity to produce complex biofilms, allowing for increased competency and specificity during symbiosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Properties (in Vitro) Exhibited by Free-living and Symbiotic Vibrio Isolates.

Adhesion and biofilm forming ability of symbiotic bacteria play a crucial role in host colonization and tissue infection. Bacteria benefit by adhering to their host in a manner that allows them to successfully maintain contact for the exchange of nutrients, hormones, or other necessary products. This study examined pili morphology, motility, and biofilm formation exhibited by Vibrio fischeri st...

متن کامل

Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri.

Symbiosis between the bobtail squid Euprymna scolopes (Mollusca: Cephalopoda) and Vibrio fischeri bacteria has been a well-studied model for understanding the molecular mechanisms of colonization and adherence to host cells. For example, pilin expression has been observed to cause subtle variation in colonization for a number of Gram-negative bacteria with eukaryotic hosts. To investigate varia...

متن کامل

Differentially expressed genes reveal adaptations between free-living and symbiotic niches of Vibrio fischeri in a fully established mutualism.

A major force driving in the innovation of mutualistic symbioses is the number of adaptations that both organisms must acquire to provide overall increased fitness for a successful partnership. Many of these symbioses are relatively dependent on the ability of the symbiont to locate a host (specificity), as well as provide some novel capability upon colonization. The mutualism between sepiolid ...

متن کامل

Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization.

In this study, we demonstrated that the putative Vibrio fischeri rpoN gene, which encodes sigma(54), controls flagellar biogenesis, biofilm development, and bioluminescence. We also show that rpoN plays a requisite role initiating the symbiotic association of V. fischeri with juveniles of the squid Euprymna scolopes.

متن کامل

Arabinose induces pellicle formation by Vibrio fischeri.

Biofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacterium Vibrio fischeri can be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of basic microbiology

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 2011